Scheduling Parametric Data Flow Graphs

Vagelis Bebelis
vagelis.bebelis@inria.fr

INRIA - STMircoelectronics

SYNCHRON 2012

Alain Girault (INRIA)
Pascal Fradet (INRIA)
Bruno Lavigueur (STM)

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12

Scheduling parametric data flow applications on many core
platforms

@ Background: Data flow models, from synchronous to parametric
@ Many-Core platform: Platform 2012
@ Scheduling: Scheduling framework for parametric data flow

@ Perspective: Possible future work and exploration

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12

Outline

@ Data Flow Models
@ Synchronous Data Flow
@ Parametric Data Flow

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 3/29

Synchronous Data Flow

@ Synchronous Data Flow ! (SDF): Each port has a fixed rate known at

compile time.
3 1 2 4
(A] (8] {C]
3 2

A Synchronous Data Flow graph

Actors: Function units
Edges: Communication links (FIFO)

Port rate: Number of tokens transferred through a port

e © ¢ ¢

Graph State: Number of tokens on the graph's edges
Si=1[0 0 6]

1Synchronous Data Flow, E.A.Lee et al. 1987
V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 4/29

Synchronous Data Flow
3 1.—2 4
R
A |B] C
3 2

SDF graph
#A-3=#B
@ Balance equations: #B-2=#C -4
#C-2=+#A-3
@ Repetition vector: [2 6 3]
@ lteration: Sequence of firings that return the graph to the initial state
@ Schedule: Execution of a complete iteration

e.g. Single Appearance Schedule: A%, B®, C3

Liveness: enough initial tokens to fire actors on a directed cycle

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 5/29

Advantages & Disadvantages of SDF

+ Natural expression of DSP applications

+ Finite memory - Boundedness guarantee
+ Deadlock-free operation - Liveness guarantee

+ Static scheduling - Timing guarantee

Disadvantages

— Not expressive enough
(e.g. for video codec applications)

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 6 /29

Parametric Data Flow

@ Parametric Data Flow (PDF) uses parameterized instead of fixed port
rates.

@P 2@(1 Pq@

A parametric data flow graph

@ Simplified version of SPDF 2 and PSDF 3 models
@ No parameter changes within iterations
@ No hierarchical structures

@ Symbolic analysis of the graph
Repetition vector:[2 p 1]

2Schedulable Parametric Data Flow, P.Fradet et al. 2012
3parametric Dataflow Modelling for DSP Systems, B.Bhattacharya-et al. 2001

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12

Advantages & Disadvantages of PDF

Advantages

+ Finite memory - Boundedness guarantee
+ Deadlock-free operation - Liveness guarantee

+ Expression of video applications

Disadvantages

— Static scheduling possible but too restrictive
(e.g. As soon as possible schedule cannot always be expressed)

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12

Example: VC-1 decoder capture in PDF

(122} (PIPELINE }——2-{SMOOTH}—
PRED | 1ZZ PIPELINE SMOOTH
b
bf
(D)
bf MOTION b
b b b~
ADD
b COMP (S 5
MV | b b
PRED DEBLOCK |«
b
MAPPING

SYNCHRON'12

Scheduling Parametric Data Flow Graphs

V.Bebelis (INRIA-ST)

Outline

© Platform 2012

V.Bebelis (INRIA- Scheduling Parametric Data Flow Graphs SYNCHRON'12 10 / 29

Platform 2012

Platform Features

@ Many - core platform designed by STMicroelectronics
@ 1-32 clusters with 1-16 cores:

o Software cores: General Purpose Processors (GPP)
o Hardware cores: Hardware processing elementes (HWPE)

@ Native programming model

v

Mapping assumptions

@ Application fits in a single cluster

@ Each actor is executed by a GPP or implemented as a HWPE
@ The schedule is executed by a GPP

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 11 /29

Native programming model

@ Predicated Execution Data Flow (PEDF) model

@ Simplifies the parallel implementation of applications

@ Data flow implementation of applications:
o Filter: Basic functional block
o Controller: Schedules the firing of filters and controls the configuration
parameters

@ Uses a slot notion for scheduling like in blocked scheduling
-+ All filters synchronize after each cycle of iterations
+ Reduces computational complexity of parallel scheduling
+ Compatible with other many-core platforms (CUDA, OpenGL)
— Introduces slack

4Compile—time Scheduling and Assignment of Data-flow Program Graphs with
Data-Dependent lteration, S.Ha et al. 1991

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12

Scheduling example
@3 1@2 s
3 L._._._._._.—L—lr_ 2

SDF graph

Repetition vector: [2 6 3]

Fire(A) Fire(B) Fire(B) Fire(B) Fire(B) Fire(B) Fire(B)
Fire(A) Fire(B) Fire(C) Fire(C) Fire(C)

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 13 /29

© Scheduling
@ Scheduling SDF graphs
@ Scheduling PDF graphs
@ Scheduling framework

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12

Scheduling SDF graphs

Scheduling goal
Schedule all firings to complete an iteration

@ Repetition vector: [2 6 3]

3 1—2 4
A B C
3 2

SDF graph
@ Scheduling examples:
o Sequential schedules:
A2, B¢ C3 - Single appearance schedule
A B% C,B,AB,C,B%C - Minimum buffer size schedule

Parallel schedules:
A, (A||B),[B,(B||C)?,B,C - As Soon As Possible schedule (ASAP)

¢ € ¢ ¢

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 15/ 29

Scheduling PDF graphs

@P 2@q Pq@

PDF graph

(]

Repetition vector: [2 p 1]

(]

Single appearance schedule: A2, BP, C

(]

Quasi-static schedule uses parameters to express a schedule at
compile time

Unable to produce ASAP schedule (next slide)
No scheduling flexibility

(]

(]

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12

ASAP scheduling of PDF graphs

@ Considering the generic PDF edge:

p q

@ Minimum firings of actor A for ASAP firing of actor B:

(%] n1:’7%—‘ and n=m-p—gq

anz{%} and n=m-p—gq
Q m= {q;m] and 3=n-p—gq
= Y

@ As the number of remaining tokens change constantly a quasi-static
schedule is not possible.

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12

Scheduling framework features

Features

@ As Soon As Possible schedule
@ Minimizes schedule span (no resource sharing)
@ Maximizes parallelism
@ Flexible to be reused
o Different platforms
o Optimization criteria
@ Scheduling strategies

@ Main idea: Produce different schedules while keeping the same
algorithm

@ Usage of scheduling constraints

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 18 / 29

Scheduling framework overview

~N
Application Platform Specification
Graph Constraints Constraints
— %
))
Graph Scheduling
Constraints Constraints
—J

Constraint Satisfaction
Scheduler

& Simplification

Figure: Scheduling framework

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 19 / 29

Scheduling constraints

A constraint is a relationship between the firings of two actors (X, Y):

Xi > Y¢g)

Interpretation

@ The iy, firing of X waits for the f(i) firing of Y
= Xi must be scheduled at a later slot than Y

Constraint types

@ Graph constraints: Data dependencies
o Platform constraints: Constraints due to platforms specificities

@ User constraints: Constraints to optimize some criterion

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 20 /29

Constraint Types

Graph Constraints
@ Data dependencies derive from the graph.

@ For each edge of the graph we get:

° Vi > Xy with (i) = [L’”’-‘(e)-‘

X

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 21 /29

Constraint Types

Platform Constraints

@ Platform constraints are given and derive from platform specificities

@ Applied to all application of the platform

o Example:

Prevention of power intensive filter H from firing twice in a row
= Introduction of dummy filter D

@ Hi>D;_1 and D;> H;

V.Bebelis (INRIA-ST)

Scheduling Parametric Data Flow Graphs SYNCHRON'12 22 /29

Constraint Types

User Constraints
@ User constraints are used to achieve specific schedule behaviour

@ To express an optimization
@ To set a scheduling strategy

P q

init(e)

o Example:
Buffer capacity restriction to k tokens

. . i+init(e)—k
= Ai > Bg(p with g(i) = [%—‘
@ May introduce deadlocks!!! = Constraint satisfaction algorithm to
ensure compatibility

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 23 /29

Constraint deadlock Detection

Deadlock

A set of constraints deadlocks when there is a constraint that propagates
from an actor's firing to the same or future firing of the same actor.

A, 0,4, (A > A A (1<)

@ Thus for each cycle:
Ai > By > - > Cr_ i) > An)

= Ai > A (o (1))

@ Check if
I > fl(o (fn—l(fn(i)))

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 24 /29

Deadlock detection example

@ Considering the constraints between actors A and B:

p q

init(e)

@ Graph constraint: B; > Ag(j with f(i) = [%’”t(eq

@ User constraint: A; > Bg(j with g(i) = [%j(e)_k-‘

@ Circular constraint: A; > Af(g(j))

@ Deadlock check: i > f(g(i)) =i > [

. l_p.i+im:(e)—k-| _init(e) —‘
p

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 25 /29

Run-time scheduler

@ Set of actors

@ Repetition vector

@ List of constraints

End of
iteration

Constraint Available

evaluation actors

Overhead

@ Overall small overhead:

o Concurrent execution with graph actors
o Small amount of constraints

o Optimization of static parts of the graph

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 26 /29

Example use case: VC-1 decoder

(122} (PIPELINE }——2-{SMOOTH}—
PRED | 1ZZ PIPELINE SMOOTH
b
bf
(D)
bf MOTION b
b b b~
ADD
b COMP (S 5
MV | b b
PRED DEBLOCK |«
b
RANGE
MAPPING

SYNCHRON'12

Scheduling Parametric Data Flow Graphs

V.Bebelis (INRIA-ST)

Outline

Q@ Future Work

V.Bebelis (INRIA- Scheduling Parametric Data Flow Graphs SYNCHRON'12 28 /29

Conclusions

@ Flexible constraint framework for PDF graphs

@ Modular way to change the schedule without changing the scheduling algorithm
@ Ability to express platform specificities and scheduling strategies

@ Compile time guarantees of schedule liveness
v

@ Scheduler optimization:Solve all static and quasi-static actors at compile-time,
run-time scheduling only when necessary

@ Extension of the PDF model to include boolean parameters
@ Extension of the constraints to express more interesting scheduling strategies

@ Implementation and integration of the framework within ST's tool-chain for the
platform

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON'12 29 /29

	Data Flow Models
	Synchronous Data Flow
	Parametric Data Flow

	Platform 2012
	Scheduling
	Scheduling SDF graphs
	Scheduling PDF graphs
	Scheduling framework

	Future Work

