
Scheduling Parametric Data Flow Graphs

Vagelis Bebelis
vagelis.bebelis@inria.fr

INRIA - STMircoelectronics

SYNCHRON 2012

Alain Girault (INRIA)
Pascal Fradet (INRIA)
Bruno Lavigueur (STM)

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 1 / 29



Introduction

Goal:

Scheduling parametric data flow applications on many core
platforms

Background: Data flow models, from synchronous to parametric

Many-Core platform: Platform 2012

Scheduling: Scheduling framework for parametric data flow

Perspective: Possible future work and exploration

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 2 / 29



Outline

1 Data Flow Models
Synchronous Data Flow
Parametric Data Flow

2 Platform 2012

3 Scheduling

4 Future Work

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 3 / 29



Synchronous Data Flow

Synchronous Data Flow 1 (SDF): Each port has a fixed rate known at
compile time.

A B C
3 1 2 4

23
A Synchronous Data Flow graph

Actors: Function units

Edges: Communication links (FIFO)

Port rate: Number of tokens transferred through a port

Graph State: Number of tokens on the graph’s edges
Si =

[

0 0 6
]

1Synchronous Data Flow, E.A.Lee et al. 1987
V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 4 / 29



Synchronous Data Flow

A B C
3 1 2 4

23
SDF graph

Balance equations:
#A · 3 = #B

#B · 2 = #C · 4
#C · 2 = #A · 3

Repetition vector:
[

2 6 3
]

Iteration: Sequence of firings that return the graph to the initial state

Schedule: Execution of a complete iteration
e.g. Single Appearance Schedule: A2,B6,C 3

Liveness: enough initial tokens to fire actors on a directed cycle

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 5 / 29



Advantages & Disadvantages of SDF

Advantages

+ Natural expression of DSP applications

+ Finite memory - Boundedness guarantee

+ Deadlock-free operation - Liveness guarantee

+ Static scheduling - Timing guarantee

Disadvantages

− Not expressive enough
(e.g. for video codec applications)

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 6 / 29



Parametric Data Flow

Parametric Data Flow (PDF) uses parameterized instead of fixed port
rates.

A B C
p 2 q pq

A parametric data flow graph

Simplified version of SPDF 2 and PSDF 3 models

No parameter changes within iterations

No hierarchical structures

Symbolic analysis of the graph
Repetition vector:

[

2 p 1
]

2Schedulable Parametric Data Flow, P.Fradet et al. 2012
3Parametric Dataflow Modelling for DSP Systems, B.Bhattacharya et al. 2001

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 7 / 29



Advantages & Disadvantages of PDF

Advantages

+ Finite memory - Boundedness guarantee

+ Deadlock-free operation - Liveness guarantee

+ Expression of video applications

Disadvantages

− Static scheduling possible but too restrictive
(e.g. As soon as possible schedule cannot always be expressed)

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 8 / 29



Example: VC-1 decoder capture in PDF

VLD

PRED IZZ PIPELINE SMOOTH

MV

PRED

MOTION

COMP

PREFETCH

ADD

DEBLOCK

RANGE

MAPPING

bf

bf

b

b

b

b

b

bb

b b b

b

b

b

bf

bfb

bf

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 9 / 29



Outline

1 Data Flow Models

2 Platform 2012

3 Scheduling

4 Future Work

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 10 / 29



Platform 2012

Platform Features

Many - core platform designed by STMicroelectronics

1-32 clusters with 1-16 cores:

Software cores: General Purpose Processors (GPP)
Hardware cores: Hardware processing elementes (HWPE)

Native programming model

Mapping assumptions

Application fits in a single cluster

Each actor is executed by a GPP or implemented as a HWPE

The schedule is executed by a GPP

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 11 / 29



Native programming model

Predicated Execution Data Flow (PEDF) model

Simplifies the parallel implementation of applications

Data flow implementation of applications:

Filter: Basic functional block
Controller: Schedules the firing of filters and controls the configuration
parameters

Uses a slot notion for scheduling like in blocked scheduling 4

+ All filters synchronize after each cycle of iterations
+ Reduces computational complexity of parallel scheduling
+ Compatible with other many-core platforms (CUDA, OpenGL)
− Introduces slack

4Compile-time Scheduling and Assignment of Data-flow Program Graphs with
Data-Dependent Iteration, S.Ha et al. 1991

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 12 / 29



Scheduling example

A B C
3 1 2 4

23
SDF graph

Repetition vector:
[

2 6 3
]

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 13 / 29



Outline

1 Data Flow Models

2 Platform 2012

3 Scheduling
Scheduling SDF graphs
Scheduling PDF graphs
Scheduling framework

4 Future Work

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 14 / 29



Scheduling SDF graphs

Scheduling goal

Schedule all firings to complete an iteration

Repetition vector:
[

2 6 3
]

A B C
3 1 2 4

23
SDF graph

Scheduling examples:

Sequential schedules:
A2,B6,C 3 - Single appearance schedule
A,B2,C ,B,A,B,C ,B2,C - Minimum buffer size schedule
Parallel schedules:
A, (A‖B), [B, (B‖C )]2,B,C - As Soon As Possible schedule (ASAP)

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 15 / 29



Scheduling PDF graphs

A B C
p 2 q pq

PDF graph

Repetition vector:
[

2 p 1
]

Single appearance schedule: A2,Bp,C

Quasi-static schedule uses parameters to express a schedule at
compile time

Unable to produce ASAP schedule (next slide)

No scheduling flexibility

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 16 / 29



ASAP scheduling of PDF graphs

Considering the generic PDF edge:

A B
p q

Minimum firings of actor A for ASAP firing of actor B :

1 n1 =
⌈

q
p

⌉

and r1 = n1 · p − q

2 n2 =
⌈

q−r1
p

⌉

and r2 = n2 · p − q

3 n3 =
⌈

q−r2
p

⌉

and r3 = n3 · p − q

4 · · ·

As the number of remaining tokens change constantly a quasi-static
schedule is not possible.

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 17 / 29



Scheduling framework features

Features

As Soon As Possible schedule

Minimizes schedule span (no resource sharing)
Maximizes parallelism

Flexible to be reused

Different platforms
Optimization criteria
Scheduling strategies

Main idea: Produce different schedules while keeping the same
algorithm

Usage of scheduling constraints

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 18 / 29



Scheduling framework overview

Application

Graph

Platform

Constraints

Specification

Constraints

Graph

Constraints

Scheduling

Constraints

Constraint Satisfaction

& Simplification
Scheduler

Figure: Scheduling framework

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 19 / 29



Scheduling constraints

A constraint is a relationship between the firings of two actors (X ,Y ):

Xi > Yf(i)

Interpretation

The ith firing of X waits for the f (i)th firing of Y
⇒ Xi must be scheduled at a later slot than Yf (i)

Constraint types

Graph constraints: Data dependencies

Platform constraints: Constraints due to platforms specificities

User constraints: Constraints to optimize some criterion

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 20 / 29



Constraint Types

Graph Constraints

Data dependencies derive from the graph.

For each edge of the graph we get:

X Y
x

init(e)

y

Yi > Xf (i) with f (i) =
⌈

y ·i−init(e)
x

⌉

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 21 / 29



Constraint Types

Platform Constraints

Platform constraints are given and derive from platform specificities

Applied to all application of the platform

Example:
Prevention of power intensive filter H from firing twice in a row
⇒ Introduction of dummy filter D

Hi > Di−1 and Di > Hi

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 22 / 29



Constraint Types

User Constraints

User constraints are used to achieve specific schedule behaviour

To express an optimization
To set a scheduling strategy

A B
p q

init(e)
k

Example:
Buffer capacity restriction to k tokens

⇒ Ai > Bg(i) with g(i) =
⌈

p·i+init(e)−k

q

⌉

May introduce deadlocks!!! ⇒ Constraint satisfaction algorithm to
ensure compatibility

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 23 / 29



Constraint deadlock Detection

Deadlock

A set of constraints deadlocks when there is a constraint that propagates
from an actor’s firing to the same or future firing of the same actor.

∃A, i , j , (Ai > Aj) ∧ (i ≤ j)

Thus for each cycle:

Ai > Bf1(i) > · · · > Cfn−1(i) > Afn(i)

⇒ Ai > Af1(···(fn−1(fn(i)))

Check if
i > f1(· · · (fn−1(fn(i)))

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 24 / 29



Deadlock detection example

Considering the constraints between actors A and B:

A B
p q

init(e)
k

Graph constraint: Bi > Af (i) with f (i) =
⌈

q·i−init(e)
p

⌉

User constraint: Ai > Bg(i) with g(i) =
⌈

p·i+init(e)−k

q

⌉

Circular constraint: Ai > Af (g(i))

Deadlock check: i > f (g(i)) ⇒ i >

⌈

q·⌈ p·i+init(e)−k

q
⌉−init(e)

p

⌉

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 25 / 29



Run-time scheduler

Input

Set of actors

Repetition vector

List of constraints

Input
Constraint
evaluation

Available
actors

End of
iteration

Overhead

Overall small overhead:

Concurrent execution with graph actors
Small amount of constraints
Optimization of static parts of the graph

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 26 / 29



Example use case: VC-1 decoder

VLD

PRED IZZ PIPELINE SMOOTH

MV

PRED

MOTION

COMP

PREFETCH

ADD

DEBLOCK

RANGE

MAPPING

bf

bf

b

b

b

b

b

bb

b b b

b

b

b

bf

bfb

bf

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 27 / 29



Outline

1 Data Flow Models

2 Platform 2012

3 Scheduling

4 Future Work

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 28 / 29



Future Work

Conclusions

Flexible constraint framework for PDF graphs

Modular way to change the schedule without changing the scheduling algorithm

Ability to express platform specificities and scheduling strategies

Compile time guarantees of schedule liveness

Future work

Scheduler optimization:Solve all static and quasi-static actors at compile-time,
run-time scheduling only when necessary

Extension of the PDF model to include boolean parameters

Extension of the constraints to express more interesting scheduling strategies

Implementation and integration of the framework within ST’s tool-chain for the
platform

V.Bebelis (INRIA-ST) Scheduling Parametric Data Flow Graphs SYNCHRON’12 29 / 29


	Data Flow Models
	Synchronous Data Flow
	Parametric Data Flow

	Platform 2012
	Scheduling
	Scheduling SDF graphs
	Scheduling PDF graphs
	Scheduling framework

	Future Work

